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', In this report, we consider the quantization of random sources. The

problem of signal quantizer design under an incomplete statistical

description of the source is first considered. It is assumed that a histo-

gram of the source on a finite domain is known. The compandor model

for a non-uniform quantizer with a large number of output levels is

employed. Both minimum mean and minimax error criteria are investi-

gated leading to the design of piecewise linear compressors. Topics on

the partitioning of the histogram are included.

For vector quantization, the design of a spherical coordinates quan-

tizer in M dimensions is discussed. Exact and compandor model solutions

are derived as is the factorization of the quantization levels to each quan-

tizer. Numerical examples are presented along with asymptotic results.

Also investigated is the optimality of polar quantizers with the subse-

quent development of optimal circularly symmetric quantizers. Exam-

ples of these Dirichlet polar quantizers for the bivariate Gaussian source

are included and their performance is compared to optimum error rates.

The topic of implementation is considered.

This report closes with a review of the presented material and

suggestions for further research.
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CHAPTER 1- INTRODUCTION

The process of quantization is ubiquitous in the areas of communica-

tions and signal processing [1], In its most general sense, quantization is

a nonlinear mapping of a continuous time, vector-valued source onto a

finite set of values. Many electrical engineering schemes include some

form of quantization: digital data communications, digital storage, digital

filtering, etc. From these few examples, we see that digital techniques

involve quantization, in fact, any analog-to-digital conversion (A/D)

requires a simple form of quantizer. A major goal in the design of signal

quantizers is accurate representation or reproduction of the source.

Quantizers have adso been applied to problems in detecti= " estima-

tion; however, we will consider mainly their use in the direct signal

representation sense.

In most cases of interest, the source is not deterministic; hence a

statistical measure of performance is required. The performance of the

device is measured by some suitable functional of the quantizer itself and

of the source's statistical properties. The most common form of measure

is that of mean r-th error

=f Ix- Q(x)Ip(x)dx
where Q(x) is the output of the quantizer for an input x, the exponent r is

some appropriate value usually greater than unity, p (i) is the source

density function and the integral is taken over the domain of the source.

Other functionals have been suggested in place of Ix - Q(x) I" and are
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often amenable to the techniques considered in this dissertation.

A quantizer is most simply characterized as a set of disjoint regions

on the domain of the source whose union completely covers the space.

Assigned to each region is an output value. The quantizer's operation

consists of deciding which region contains the input value and assigning

to Q(W) the associated output value. In one dimension, the input space is

the real line, or some subset of it, and the regions are intervals. This

zero memory quantizer is the simpliest to analyze; much of the previous

research into quantizer design involved solving for the endpoints of these

intervals and the associated output points.

A useful model for a zero memory quantizer with unequal step size is

the compandor system. This method models the quantizer as a series

connection of three elements: a compressor nonlinearity fellowed by a

uniform quantizer followed by an expandor nonlinearity. Any non-

uniform quantizer can be modeled in this fashion by appropriately choos-

ing the three components.

Signal quantizers can be separated into three categories: zalar, mul-

tidimensional and robust quantizers. As mentioned above, scalar quantiz-

ers have received much attention. Their simplicity is embodied in the

fact that the regions (intervals) are easily defined. For a vector source,

the choice of quantization region is not as obvious; a multitude of shapes

and patterns will cover the space. Rate distortion theory, however, sug-

gests that large increases in performance are possible with block coding.

The previous research in multidimensional quantizers includes the

analysis of asymptotic performance rates of optimal quantizers for vari-
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ous sources along with algorithms for their design. Unfortunately, the

resulting implementation is usually much more complex than that of

scalar quantizers. The design of suboptimal vector quantizers has also

been considered. These include the use of uncorrelating filters and polar

coordinates representation quantizers.

Robust quantizers are also of interest. By robust we mean that the

quantizer performs well over a class of input sources rather than just the

one it was designed for. In fact, robust design often means that some

minimum level of performance is guaranteed if the input is of a particu--

lar class of sources. The source density classes that have already

received attention are those with finite domain or with moment con-

straints.

OUTLINE

An outline of the chapters is presented below. Each chapter is sell

contained so that they may be read in any order.

Chapter 1 contains the above summaries of the problems of data

quantization and this dissertation outline. Following these brief notes, a

bibliography on data quantization is included. This bibliography is a

probe of the available engineering and statistical literature and it pro-

vides a reasonable starting point for someone looking into the area for

the first time. Brief notes on some of the articles are provided.

At-
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The problem of signal quantizer design under an incomplete statisti-

cal description of the source is considered in Chapter 2. Previous

research in this area is reviewed. For the solution described in this

chapter, the statistical information assumed known is that of a histogram

of the source on a finite domain. The compandor model for non-uniform

quantizers with a large number of output levels is employed. Both

minimum mean and minimax error criteria are investigated leading to

the design of piecewise linear compressors. Topics on the partitioning of

the histogram are included. Quantizers are designed accordingly and

compared to other designs.

Chapters 3 and 4 consider the quantization of multidimensional

sources. Several investigators [56,7,8 have considered polar coordi-

nates quantization of a bivariate, circularly sy.nmetriv source. Their

schemes quantize the polar coordinates represcntation of the random

variables independently in an attempt to reduce the mean square error

below that of an analogous rectangular coordinates quantizer yet retain

an implementation simpler than that of the optimal bivariate quantizer.

Chapter 3 considers the design of a spherical coordinates quantizer in k

dimensions with k>2 (k=2 matches published results). Exact and com-

pandor model solutions are derived as is the factorization of the quariti-

zation levels to each quantizer. Numerical examples are presented along

with asymptotic results. Comparisons to the rectangular (one-

dimensional) and optimal schemes are included for the multidimensional

Gaussian, Pearson Type II and Pearson Type "vIl spherically symmetric

sources.

4,
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In the above mentioned literature, it has been shown that for the

Gaussian case the polar quantizer outperforms the rectangular quantizer

when the number of levels N is large, while for small N, the rectangular

form is often better than the polar form. Chapter 4 is an inrvestigation of

the optimality of polar quantizers with the subsequent development of

optimal circularly symmetric quantizers (labeled Dirichlet polar quantiz-

ers). Examples of these Dirichlet polar quantizers for the bivariate Gaus-

sian source are included and their performance is compared to optimum

error rates. The topic of implementation is also considered.

Chapter 5 summarizes the results presented and suggests areas for

further research.
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CHAPTER 2 - HISTOGRAM QUANTIZERS

IrRODUCTION

A signal quantizer is a device which projects a possibly infinitely-

valued, k-dimensional space onto a finite set of points. Specification of an

N-level quantizer consists of partitioning the k-space into N disjoint

regions S,, i=1 .... N, and allocating to each region an output point, y In

the one dimensional case, the input space is the real line or some subset

of it and the N regions are intervals. Hence, specifying the N+i interval

endpoints and the N output points uniquely determines the quantizer.

In general, the quantizer output will not equal the input signal, the

difference being the quantization error. The design procedure should

reduce the effect of this error by minimizing some suitable measure of

the distortion induced by the error. One common criterion is mean r-th

error

D= f z-Q(x)l'p(x) dx

where p(x) is the source probability density function (pdf), Q(x)l is the

quantizer output for the input x and the integral is taken over the domain

of the source. This error can be rewritten as

D, = f Iz- (.'Tp(z)dx (1)

where the z, are the quantizer breakpoints S=[;.z, 1)I and the V, are

the associated output points. Max [1] considered this distortion measure

frr r=2 and p(x) the Gaussian density and found necessary conditions for

- .
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the x, and y to minimize D2. One condition, which holds for most mean

error criteria, is that the breakpoints should be Dirichlet partitions of

the output points

z 1 -o+.T, = 4'(!y-, ) ; i=2,3_...N , =-'-,. =Tv+I=

This condition states that the optimal quantizer should map each input

point to the nearest output point. All schemes considered herein will

have this property which reduces the specification of an N-level quantizer

to the allocation of the N output points.

For a large number of levels, several authors [2,3,4' have modeled a

non-uniform quantizer as a three part system: a compressor nonlinearity

g, a uniform quantizer QU and an expandor nonlinearity g-' (see Fi. I)

The compressor function g maps the domain of x onto [-1,1' and the

quantizer Qu projects [-1,1] onto N equally spazed output points. Selec-

tion of the compressor function g determines the system performance.

For the mean r-th error criterion, the asymptotic error (N-.a) for a

compressor g with signal pdf p (x) is

D, f I (1+" l') dz (2)

(r+1)N' I

The calculus of variations can be used to find the best compressor

function for the particular pdf:

z2f (y€) I"(r " ) ,dy
,()=-I + -"(3)

For this compressor, the associated asymptotic mean r-th distortion is

. N1(r+1)
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ROBUST QUANTIZERS

Minimization of this mean rth distortion measure requires exact

knowledge of the signal pdf. Most of the available literature on quantizer

design assumes this pdf is known. When the source and quantizer are not

matched, severe degradation can occur. For example, Fig. 2 presents the

MSE (r=2) of several quantizers with N=16 for a Gaussian input. The

quantiz r- considered are the optimal Gaussian, the optimal uniform

Gaussian and the A-law (see Examples section) quantizers for a unit

power source. The input signal is allowed to range in power from -30 to

10 riB. Both the Gaussian quantizers show large variations in SNR. The

p-law quantizer, although relatively insensitive to variations in source

power, has substantially poorer performance when the source and quan-

tizer are nearly matched.

The performance of quantizers when the source and quantizer are

not matched was considered in greater detail by Mauersberger [5]. He

evaluated mean square error rates for variance and density shape

mismatches of generalized Gaussian density quantizers. Suggestions for

design under this known density functional form with unknown parame-

ters were presented by him. Robust quantizers, defined as those that

perform well over a range of inputs, are desirable

For the situation in which the only available statistical information is

that the source has a finite domain (the interval [-c,c]), Morris and Van-

deLinde [8] solved the minimax problem

ain max D(p,q)9CQ pP

where Q is the set of N-level quantizers, P is the class of density

- -,,-- - ' .. l &- |1 _
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functions on [-c,c7 and D(p,q) is the distortion measure for density p and

quantizer q, They investigated mean error distortion measures and

characterized the worst case density and the resulting minimax quan-

tizer. The worst case pdf consists of atoms located at the quantizer

breakpoints (the points of maximum error) and the minimax quantizer is

a uniform (equal step size) quantizer on [-c,c. Bath and VandeLinde I7

later investigated the minunax quantizer when the source is unimodal

and conforms to an integral (moment) constraint. In this case, the worst

case pdf is piecewise uniform and a numerical solution procedure is

described.

The specific problem considered herein is the design of quantizers

when the available statistical information consists of a source histogram.

An M-region histogram is characterized by the divisior of the real lme

into M disjoint regions [h.,ha +), i1,..M, and associating with each region

the probability p, that the source takes a value in that interval. If p (x is

the underlying source density, then

p = (z) dx" -<h 1 . hM_

It will be assumed that p(z) has finite support of [-L,L. Finite support

is necessary for the histogram quantizer design and relaxation of this

condition will be mentioned later. Without loss of generality, it will be

assumed that the underlying density and available histogram are sym-

metric about zero. The optimal compressor specification then reduces to

a function mapping [0,L1 onto [0, 1]

gr (x xE[O,k' (b,
f p(yi/(r+) dy

0/
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The compressor on [-L,O is defined odd symmetrically The histogram

on [0,L' has breakpoints (M even)

0=/+ <h < ... <hM+i =L
-+ -+2

with the associated probabilities p,, = 2-+1...M such that
2

M
Al 2
2=-+]

Extensions to the non-symetric case are easily made.

QUANTIZER DESIGN FROM A SOURCE HISTOGRAM

Given an M-region histogram vith regions [h,h,+1) and probabilities

p. define the region widths

Ah~-. it=1....M

A simple approach to the design of the quantizer would be to assume that

the density is piecewise constant of value p,/A, over the region ,

With this assumption, the optimal compressor characteristic on [0,L"

from Eq.(5) is

g,(x=sj x+bj c [hhj +) j= +1,.... M (6)

where si and bi. are defined by

i/ + +12

(r/(+ 1)

bj 2 , s

(pi (8) 1

2

I . - .~~ - ..-r ;"'-"'t " "

7_a _ _ _
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This compressor is piecewise linear and asymptotically has mean r-th

error

r+1

2rNr(r+1 1 I I(9)
A somewhat more conservative approach would be to consider a

rninimax-type problem. Direct minimization of the maximum error leads

to a uniform quantizer on[-L,Ll. Instead, consider a single histogram

region [h,. ,) Generalizing Morris and VandeLinde's result, the quan-

tizer on this region should be uniform. On this region, g (x) is linear and

the overall compressor is again piecewise linear

g,(z) = aix +,e ; x E [t hl, 3

Continuity of the compressor function requires that

I ~= - 4-i _

The uniform quantizer Q!' has N equispaced outputs on [-1,1

Region j of the histogram, ze[h,,h.), with width A, and compressor

slope aj, maps onto an interval of width Aaj in f-l1, . For lrge A, the

number of outputs covered by [ht,h.+4 ) is

N,= A' xal62

The maximum error in Region (since the spacing of levels in [h,,h,,+1 is

uniform) is

2,Vj -Na

The constraint on the aj's is

Ad
Y, aA =1 a >0

t24~I

E Ill AI I ct , 0

2
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For a general error functional e (.) (monotonically incr~asing in

the maximum error on Region j is e (i/ Naj). This error would be due to

a point mass located within [h1 ,h.+1 ) with error 1/Na Since error

occurs in each region where p,>0, taking a mean maximum error meas-

ure yields

M
D= 2 p, e(1/Naj)

Minimizing this sum with respect to the constraint gives the condition

afAj pje'(11Na'2 )

For the error measure e(.)="', this condition simplifies to

a1 =sj

for s. as defined by Eq.(7) Using this value of aj yields

for bj from Eq (8). The resulting mean r-th ma.Nnum error is

D fu =_ 1b1/r+1)+ = 2r(r+I)D, (10)

Both the piecewise constant density approach and the mean max-

imum error method produce the same solution when the error functional

is r-th power. Also, the errors are proportional

HISTOGRAM SELECTION

If the histogram data is not prespecified, the designer may have con-

trol over the allocation of the histogram regions. Both of the previously

considered error measures in Eqs.(9) and (10) resulted in increasing

functions of the sum

NS = f (tr)l/(*i) (11'

. .- • .-
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Bounding this term will bound the error. Chebychev type probability me-

qualities will be used to provide upper bounds on the histogram region

probabilities, the pi's, and the above sum will be ninirized over the

region widths, the A1.'s.

Consider the four region histogram for a symmetric density on

[-L.L] -with unit variance. Denote the two regions on [0,L] by [,a' and

[a,L]. The Chebychev inequality [83 (o is the source power)

Prob(x'k) ; 0--k
- 2/pk 2 ; o-k

bounds the p,

P3 = Prob(Oz -<a) < Prob(O--x) =

Ca2
P4 = Prob(aoz_!_L) !!; Wa 2a2

The sum in Eq.(ll) is then bounded by (since PI=p, A, 4 1= 4 ]D2=P3

and AZ=a3)

! j 2J +2 1 2o:2

and can be minimized for aE[0,L]. Optimal region placement is a func-

tion of the actual underlying distribution and hence does not result; how-

ever, suboptimal allocations do occur and an understanding of region

placement develops. Larger values of M are analyzed in a similar

manner.

As more information about the underlying density becomes known,

tighter bounds on the region probabilities may be found. For example,

for symmetric, unimodal densities, the Gauss inequality [8,

Prob(x-ok)< 2a2o2 / 9k22  ; a -2 ,/-3 _--

4~~ ~-, - . - ~ - ~ _ _ _
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may be employed to solve for the histogram boundaries.

Fig. 3 plots the resulting region placements for M=4, 6 and 8 region

histograms using the Chebychev inequality. The graphs indicate the loca-

tions of the histogram breakpoints for the case r =2. Notice that as a/L

increases, the solution for M=8 degenerates to the M=6 selection. Simi-

larly, the M=6 lines collapse to the 4 region case. The set of permissible

solutions (-Lshl<h2 ... <hu L) is convex and the degeneration signifies

that the minimum is achieved on the set's boundary (one or more of the

A going to zero). For larger M, the ratio of 7/L must be small to obtain

non-zero ,. Fig 4 depicts similar results employing the Gauss inequality

(again r=2).

L - " 4
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NUMERICAL COMPARISONS

The following examples compare the piecewise linear compressors to

the optimal and g-law compressors under the mean square error cri-

terion. For the example pdf's, the optimal compressor is found from

Eq.(3) with the asymptotic error given in Eq.(4) The g-law quantizer has

compressor function on [0,L] of

h (1+A)

with A=255. This compressor is an approximation on [O,L] to the function

g(x) = L + c log(z/L)

where c is a constant. The performance of g *(.) is found from Eq.(2) to

be

0.2

c 2(r+ l ')N

which is truly robust, being totally independent of p(x). Unfortunately,

g*() is undefined for x0; hence, the A-law approximation is employed.

Substituti-g into Eq.(2) with r=2 yields the A.-law compressor's asymp-

totic mean square error

DowL2 ln2 (1+g) I 2L p j+422
D2  3/ 2 N 2  L+ x +

The comparison of performance for small N (N=16) quantizers is also

tabulated. The outputs are found by an inverse mapping through the

compressor functions of eight equally spaced points in [0,1]. Dirichiet

partitions define the quantizer breakpoints (the z,) and the mean square

error is found from Eq. (1).
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GAUSSIAN SOURCE: The unit normal source is the canonical choice for

the comparison of quantization schemes. The pdf for x [-L,L" is

p(x) = K e-'/2

with K chosen for unit mass on [-L,L]. The optimal compressor function

on [O.L] is

Zfe -y/+6
g~t(x) =o

feiI/edy
f e -Y '/ 6dy
0

The following results are for L=5 (5u loading).

Piecewise linear compressors for 4,6 and 8 region histograms are

compared (corresponding to 2,3 and 4 regions on [0,5'). The Gauss ine-

quality bound with u/L=0.2 yields suboptimal region placement for M

equal to 4 and 6. For M=8, equispacing and a modified Gauss placement

are tabulated. Figs. 5 and 6 display these compressor functions. Table I

lists the histogram region endpoints and the associated asymptotic error

rates. The M=2 quantizer is the uniform quantizer on [-5,5.

For small N (N=16), Table 11 lists the positive output values for Max's

optimal, A-law and piecewise linear compressors. The piecewise linear

examples are the M=4 (Gauss bound) and M=8 (equispaced) versions.

Values of mean square error and the associated Signal-to-Noise Ratio are

tabulated where

SNR = 10 logl0 u2 dB

• • • "• I I IIllI III. . . . I I II -
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M _ .Histo ram Divisions N2D
2 5. I8.33
4 2.1 5. 4.00
6 1.75 2 95 5. 3.22f
8(a) 0.7 1.4 2.65 5. 3.31
8(b) 1.25 ,2.5 375 5 301

_ l-awcornpressor 106
optimal comressor 2.69

Table I - Gaussian source asymptotic error rates

Max Opt .- law 4 region 8 re o,

yj 0 1284 0.008122 0.1855 0 1517
Y2 0.3881 0.03585 0.5565 0.4551
V3 0.6568 009131 0 9276 07586
Y4 0.9424 0.2022 1.299 1.062
Y5 1.256 04241 1.670 1.433
Yd8 1.618 0.8677 2041 1 913
Y? 2.069 1755 3141 2.393
Id 2.733 3.530 4.380 3446

MSE 0009513 0.04098 001452 001090
SNR (dB' 20.2 !13 9_ 184 19.6

Table II - N=16 Gaussian source quantizers.
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LPLACIAN SOURCE. When modeling signal sources, the Laplace sour, e

on [-L,L' is sometimes considered

p(z) = K e'

The optimal compressor on 10,L] is

gl~e-,X)/=

I -aL/ 3

For this pdf, taking L=8 and a=12 yields unit variance. Again, the Gauss

inequality bound yields suboptimal region selection for a/L=0. 125. Figs.

7 and 8 depict the optimal, M,-law and piecewise linear compressors for

M=4,6 and 8. Table III lists the histogram breakpoints and the asymptotic

error rates

Adams and Geisler [9' tabulated optimal output values for the

Laplace source when .N=16 and r=2. Table r' lists these values along with

the outputs for the /-law device and the M=4 and 8 histogram quantizers.

As m the previous example, MSE and SNR are tabulated for each scheme.

7.. , .[



-35-

1k

q 1 to0

* '4 

Lt

-,dn osado



-36-

Cc O

If If

'I C

C C
0 CQ

(:S nd~no Jossajduio3



-37-

M Histogram Divisions L
28. 21,3
4 2.56 I8. 7,16
6 1.92 3.92 8 5 .4 7

8 .76 2884 8 500
u-law comDressor 10. 7

o timal comvressor - 4.20

lable Il - Laplacian source asynptotic error rates

A& 0pt -],-w 4 re£lori 5 regior.
I 0 1240 0 01299 0 2395 0 1915

YZ 04048 0.05736 0 7195 0 5745
3 0.7287 0 1461 1 199 0.9575

Y4 1.111 0.3236 1 679 1.341

Y5 1.578 0.6785 21 58 1.24

Y6 2.177 1 368 2 892 2.4"7
Y7 3.017 2.808 4935 3.628

_ 4.431 5648 6 98 5.810

MSE 0.0151 0.0405 00255
SNR (dB, KZt.9 139 15 9 1 1'7.2

Iable rV- Y' 16 Laplacian source quantizers

rL



-38-

CONCLUSIONS

Robust quantizer design depends entirely upon the amount of infor-

mation assumed about the class of permissible input distributions. As

previously mentioned, the uniform quantizer is the minimax quantizer

when only finite support of the density is known and the g-law quantizer

performs well for most input statistics. From the examples, the pro-

posed method of piecewise linear compressor quantizer design is seen to

present a viable alternative to uniform quantization or optimal quantiza-

tion of the "known" pdf. A few other points need to be considered.

1- Initially, the input was assumed to have finite support of [-L,L.

Without this constraint, some of the histogram region widths, the A,

would be infinite and the resulting piecewise linear compressor would

have sections of zero slope. Far non-finite support, select L such

that the probability of overload (x outside [-L,L) is small and map

the overload regions to the nearest output, y, or YN.

2- The use of probability inequalities in histogram region selection pro-

vided degenerate solutions for M>8 unless o/L approached zero

The results for M=8 from Table I indicate that equal subdivisions of

I-L,L] is a reasonable procedure for larger M. For A, of order 1/M,

the histogram converges uniformly to the underlying density [101

and the piecewise linear compressor converges to the optint

compressor.

3- The M-1 cusps of the piecewise linear compressor may seem

undesirable. Initially, the quantizer breakpoints were defined as Diri-

chlet partitions of the output points. On the sides of a cusp, the two

~ ~ d . _.
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linear segments will in general have different output point spacing

and the resulting partition will not fall exactly on the cusp. Hence, a

slight rounding of the cusp occurs.

4- The simplicity of the compressor curve calculation [Eqs (7) and (8>1

suggests that this scheme may be employed adaptively. Occasional

histogram measurement would keep the quantizer tuned to a non-

stationary input.
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CHAPTER 3 - MULTIDIMENSIONAL SPHERICAL COORDINATES QUANTIZATION

INTRODUCTION

A data quantizer is a mapping of a vector-valued source onto a fInite

number of points. A general multidimensional characterization of an N-

level quantizer consists of a partition of the input space into N disjoint

regions and the assignnent of a partcular output value to each region.

Implementation requires deciding which of the regions the input is an

element of, often a time consuming task. In one dimension, a scalw or

zero-memory quantizer has regions which are intervals on the real line;

hence its implementation is simple. Both uniform and non-uniform inter-

val width scalar quantizers have been designed for a variety of fidelity cri-

teria and source statistics. The canonical example is Max's unit power,

Gaussian probability density function quantizer [1] for the performance

criterion Mean Square Error (MSE). The MSE criterion has universal

appeal in its tractability and the intuitive notions of noise power and

signal-to-noise ratio. Rate distortion theory, however, suggests that mul-

tidimensional quantizers may be more efficient.

Research in multidimensional quantization began with the works of

Huang and Schultheiss [2] and Zador [3.. Huang and Schultheiss con-

sidered the quantization of a correlated Gaussian source. Their system

transformed the input vector by a linear device to a set of uncorrelated

(hence independent) coordinates and quantized each new coordinate

separately. This scheme, although suboptimal, retained a simple imple-

mentation and reduced the MSE below that of separate quantizers for the
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correlated rectangular coordinates. The solution included the factoriza-

tion of the levels to each quantizer since the product of the number of

levels in each quantizer must equal the total number of levels N. Zador

considered asymptotic error rates for optimal multidimensional quanti-

zation in k dimensions. He derived bounds on the minimally attainable

distortion but did not present the actual quantizer design. Later, Gersho

[4] and Conway and Sloane [5] discussed optimal quantizer designs of

particular dimensionalities.

A major area of interest in suboptimal multidimensional quantizer

design involves the use of polar coordinates (k=2). After effecting a

change from rectangular to polar coordinates, the resulting magnitude

and phase are quantized using separate scalar, Max-type quantizers. Both

Pearlman [6' and Bucklew and Gallagher [7' considered the quantizing of

an independent, bivariate Gaussian random variable in tus manner. DFT

coefficients, holographic data or a pair of inputs from an independent and

identically distributed Gaussian source can be considered as the output

of a bivariate Gaussian source, Published results show that the polar

form almost always outperforms the rectangular format, a pair of Max

quantizers, for Gaussian variates. Bucklew and Gallagher [8' later

extended the polai form to any circularly symmetric density of which the

bivariate Gaussian is one example. Noting that rectangular quantizers

outperform the polar quantizers when N is small, Wilson [9' defined

unrestricted polar quantizers which have lower MSE values. Swaszek and

Thomas (10 investigated the optimality of the polar schemes and intro-

duced a scheme which resembles the optimal quantizer for the bivariate
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Gaussian source, a tessellation of distorted hexagons, but has a simpler

implementation.

This chapter describes an extension of the polar quantizers men-

tioned above to the quantization of a k-dimensional spherically sym-

metric random source. The next section considers the data vector x of

length k with rectangular coordinate elements xj, j =1,2... .k. The source

statistics are conLained in its k-dimensional density function f (x). Using

a transformation to k-dimensional spherical coordinates, the resulting

magnitude and k-1 angles will be separately quantized. In the third sec-

tion, the magnitude and angles quantizers are derived when MSE is the

performance criterion. Asymptotic results and allocation of the number

of levels to each separate quantizer are the topics addressed in the

fourth section. Finally, we present several examples.

SPHERICAL COORDINATES QUANTIZERS

Spherically symmetric sources are characterized by contours of con-

stant height that are hyperspheres in the k dimensional space. These

spherically symmetric densities can be generated by replacing the

independent variable of a zero mean, unit power univariate density, say

p (x), with the square root of a quadratic form [1 i. The resulting density

has the form

f W =yp Ix _~1) tR k

where y is a scaling constant so that the density has unit mass. The

resulting multivariate density, however, does not in general have as its

marginals the uruvariate p (z)

,,-, .,, , ., ,. .
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There is a method of generating spherically symmetric densities with

a specific marginal. Assume the marginal has characteristic function

l,(u, and let thc rn-d.mensional characteristic function be

Taking the inverse transform yields the m-dimensional density f (x).

Care must be taken to ensure that f (x) integrates to one and is positive

for all x.

In one-dimensional or rectangular quantization, each coordinate x is

quantized independently by a Max-type, scalar quantizer Qj. The result-

ing quantization regions, being thc cross product of k intervals, are k-

dimensional rectangular parallelepipeds. Each coordinate has a MSE

term EI(N) which is the error associated with a scalar quantizer for the

marginal density with N levels (NIxN 2 ... xNk=N). The errors, being

independent and orthogonal, sum to the total error. A symmetry argu-

ment shows that this rectangular quantization error is minimized when

each Nj =NIl k. The total error is then kxE,(N /k).

Another set of coordinates with which to describe an input x of Rk is

the magnitude r and k-1 angles rpj's of the k-dimensional spherical coor-

dinates system [12]. The following transformations produce these coordi-

nates:

r ;x rj, j = tan- ,j= 12-I

The reverse transformations are

z r7. cosrk_-I COS~ckL ... cosr 2 cos;I



-45-

X2 =r COS;Pk_ 1 COS;Pk_ 2  . o(P . o sin~pl

xj =r cos ._l cos_ 2 . cos~rj sinal 1

Zk =r smnk-l

The k =2 case has already received much theoretical attention and is a

special case of this analysis.

A change of variables produces the source density in spherical coor-

dinates

k-I
f(x) -* f(r,,.)=fk(r) Dfj (;j)

j=1

where

fk(r) = 2r/2 rk-1 yp(r) r [0,=)r'(k / 21 1 p

is the magnitude density with p(-) as defined above. The k-1 angle densi-

ties are

f - 1 [o,r,)
2-"r

and

fj() "- +12(1/2)F(ij/2) cosj ;, c[-i /2,Tr/2 ,j =2,3 .. k-1

The resulting spherical coordinates are statistically independent.

In the spherical coordinates representation, employing separate

scalar quantizers (Q?,QIQz .... Q.-I) defines the typical quantization region

as the intersection of a non-zero width spherical shell centered at zero

with a pyramid of apex zero (see Fig. 1 for k=2 and 3 examples' The

spherical coordinates MSE expression is not as simple as that of the
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Fig. 1 - Examples of k =2 and k =3 spherical quaritizer regwon shapes
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rectangular quantizer and is derived below Another problem of interest

is the factorization of the number of levels to each quantizer

( ", =NX %*IX. %2  xNtl). In the bivariate case (k=2), the ratio of N, to

N. which minimizes the MSE has already been found [8,.

For a quantizer with input x and output 1 the MSE D is

D f Ix-i 2 f (x dx

Transforming to spherical coordinates, letting hats indicate quantized

values and employing the notation c, =cos r;, and s,=sin ;a, the error

transforms to

D f [r' + f2_(- , __-p(T,p) dr d; (W)

where p(r,w) is the spherical coordinates density, pk is the k-

dimensional spherical coordinates space and

__ = Sk-k-+Ck-k-I[Sk-29 k2+Ck-2Ck-2[S-39k-3+ [S191 +C 61C 1 "

The above integral expression for D can be simplified. The first two

terms in the brackets are independent of ; and since p(r,;) factors, c

can be integrated out of these terms. The last term in the brackets is

the product of an integral over r and one over c. Eq (l) becomes

D r 2f k(r)dr + f 2f k(r)dr -A~ -M1. f t f(r)dr (2',
o 0 0

The term

2wi 2 W2 k-1

MA 1= f f .. f ()j f() d,
0 -W/2 -w2 ta2

is independent of r and the magnitude quantizer, thus, Eq (2' can be

minimized over the magnitude quantizer's parameters. The three
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integrals present in that expression are all positive since the magnitude r

is always positive, nence, D can also be minirmzed independently of r by

maxlmrizi. the valuc of AA_

Working sequentiall)y through the h's, the Mt_ 1 term can be written

as

•-it/2 .-w/2
r/2 w/2

•I -1 --- k-

= -Jf,(Q; d;,
+ M.

The integrals in Eq.(3) are independent of Fa" The integrand of the

k-I
second, being non-negative on X [-7r/2,n/2I, insures that the second

integral is positive, hence, maximizing each M1 ( ,) term over the F

quantizer sequentially maximizes 4-i.

QUANTIZER OI'TIMIZATION

The quantizers designed in this paper are all scalar processors. Their

specification requires the computation of the output values and the end-

points of the quantization intervals. For a quantizer Q5 (') with Ns levels

operating upon an input s, adopt the notation as the ith output value

and itr as the it interval, i1,2... n wit s as the th breakpoint,

--. _-
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i=12 ...N+I. When the number of quantization levels is large, the com-

pandor model of Bennett [131 for a nonuniform quantizer will be

employed (see Fig. 2). Under this model, the quantizer Q, (.) is a three-

part system: an invertible, differentiable compressor nonlinearity 9 (-)

mapping the range of the input to [0,13, a uniform quantizer Qu(') with N.

levels on [0,1] and an expandor h(.)= 9-1(°) mapping [0,13 back to the

range oi the input signal For this model, specification of the compressor

g (.) and the number of levels N, completely determines the quantizer-

The minimization of D in Eq.(2) [maximization of each Mj in Eq.(4)

can be accomplished in two ways depending upon the value of N, When

N, is small, partial derivatives with respect to the quantizer's parameters

will yield necessary conditions for the extremum similar to those found

by Max. Positive [negative' definiteness of the matrix of second partial

derivatives evaluated at the stationary point demonstrates the

sufficiency of the necessary conditions. This may also be shown using a

second derivative test similar to Fleischer's analysis [14. These neces-

sary conditions may be employed iteratively, as also suggested by

Fleischer, to solve numerically for the optimal quantizer's parameters

When N' s large, the output of a compandor system for an input s

can be approximated by

9 ;s + -h'[g(s)] =s + gs

where E is an independent noise source uniformly distributed on

[-A/2.&/ 2 (A = 1/N, = the step size of the quantizer Q,,) After substi-

tuting for 9, the calculus of variations may be employed to yield the best

compressor function In both cases (maximizing M, or rmnimizing D.
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the functional is of the form

f h[s,F] ds

Employing the compandor approxamation, this becomes

fh[s 9 (sY ds

The Euler-Lagrange differential equation [15'

ah d Ih =0
dg ds 99

applied to this problem yields the solution

h= constant
ag'

This expression is solved for g' which is then integrated to find the

optimal compressor nonlinearity The sign of the second variation exhi-

bits the sufficiency of the compressor function solution

MAGNITUDE QUANTLZER

For small N, taking partial derivatives of D in Eq.(2) with respect to

Lhe magnitude quantizer's parameters yield:

= 1 (-2 (Wt -I +?, i = 2,3,... Nr, r 3 = 0, rA,r+ oc 5

f rf,(r)dr
FjF = • = ,... (6)

f f, (r)dr
ri

These expressions, except for the Mk_ 1 terms, are equivalent to the equa-

tions defining the minimum MSE quantizer derived by Max. His optimal,

N7 -level quantizer is defined by

-(!,-, +!,' : i = 2,3,.... N;, t 0, t;. =

, -2 -
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t4 4

f tfk (t)t
f, - ; i = 1,2 ... N,

f fk (t)t

From the Max quantizer, define a new quantizer with the same break-

points and the outputs scaled by Mk-j

This new quantizer can be shown to satisfy the necessary conditions

imposed on the magnitude quantizer by Eqs.(5) and (6). It is shown in

Appendix A that O-Mk_.i-i and is usually approximately unity so that the

scaling does not remove the output points from their respective regions

Employing the notation Ek as the unscaled quantizer's MSE, the spherical

distortion can be written as

D = Mk _I Ek (A'T) + k (I -Mk2 - )

Since the optimal magnitude quantizer is a scaled version of the Max

quantizer for the magnitude density, for large A', we employ the

minimum MSE compressor for the magnitude density

r

g,(T) = K, f f t, dt (7)
0

where K, is a constant such that gr maps to [0,1]. The actual compandor

system has its expandor scaled by Mk-,. The same compressor function

results if we directly apply the calculus of variations to the minimization

of D. Examples of the magnitude compressor function for a multivariate

Gaussian source appear in Fig. 3 (the magnitude random variable has a

chi density).

. I' . . - ,. •..
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XkMZING M, OVER THE r QUANTIZER; j=1,2 ... k-i

When Nj, the number of levels in the j-th angle quantizer is small,

partial derivatives of Mj from Eq.(4) with respect to the angle quantizer

Qj's parameters Y and ij yield the following necessary conditions

(Mo= 1):

M,. 1 (cos'i - COS'&-IL'= an-I[ " (sin,_I - sini ,) " -i = 2,3 .... Nj(8

f cosi-1,0 sire3 dD

where 1, and ON are the endpoints of the interval of definition of V

For the first angle quantizer, these expressions yield a uniform quantizer:

I= 2i(i-1)/N1  i = 1,2 .... N 1+l

-& Tr(2i-1)/N 1  i= 1,2,... N 1

and the resulting value of M1 is

sin(n/N )

The other an4,le quantizers Qj( ), jL2, are nonuniform.

For large A- we cannot immediately decide to employ the minimum

MSE compressor for the angle densities since we are trying to maximize

Mj in Eq(4) for each j, not minimize the mean square error between ;c

and Oj. Assuming that M,.I..1 I in Eq.(4) for Af, (since N. - is also large,

M,_. will be close to unity), the term in parenthesis simplifies to

cos(rp-0j). This term is expanded in a Taylor series about zero, since

_ ,,.- . . ,
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for large Nj the region widths will be small, to give

cos~rpj(re, ;
1 - 2

Now applying the compandor approximation and the calculus of varia-

tions yields the compressor function for the j-th angle:

vy

gj(rp1) =.K, f cosU')'/i d-6 (10)
--"/ 2

where again K is a constant so that 9 j maps to [0,1].

This resulting compressor is seen to be the rrinimum MSE compres-

sor for the angle density and is proportional to an incomplete beta func-

tion [16]. For the rp quantizer, the lower limit in Eq.(10) is zero, 91(;) is

linear and the quantizer is uniform. Fig. 4 presents the compressor func-

tions for the second, third and fourth angle quantizers. To see if these

approximations are reasonable for small Nj, we computed the parame-

ters of the second angle quantizer. Fig. 5 depicts the graph of the

compressor solution and the actual values satisfying the necessary condi-

tions for N2 = 16. We note that the values are very close.

The overall result is that to minimize the MSE of a k-dimensional

spherical coordinates quantizer, a factorization of the total number of

lcvcLs N msl be sellectedi N=NxN1 ... XNk-1. For small N, the Ne-level

magnitude density quantizer is found by Eqs.(5) and (6), the (P quantizer

is uniform with N 1 levels and the Mj, j =2,. _k-1, are maximized sequen-

tially, each maximization in turn specifying the ;c. quantizer Q by Eqs (8)

and (9). When Nj is large, the factorization is still made and the

compressor functions are computed from Eqs.(7) and (10)
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ASYMPTOTIC RESULTS

This section considers asymptotic MSE rates and the solution to the

problem of factoring the number of levels N to each of the spherical

coordinates ouantizers. We assume that the number of levels in each

quantizer is large so Lhat the compandor approximation is appropriate.

The levels are factored to each quantizer by

IV =N, xN 1 X ,V2 ... xN,,_ =N. x.

where N, is denoted as the product of the number of levels in all of the

angle quantizers. Previously, we developed the expression

MSE = MA:Li(N.) x Ek(Pi,) + k (1- MA2 (Nf I) (11IN

hence, we require expressions for the magnitude error E as a function of

N, and for Mk-1 as a function of N.. Previous asymptotic results [17

yield the Ek term

Ek ( N f 1/3r) d -12N N,2II k I j'2

where fk (r) is the magnitude density.

It is shown in Appendix C that Mk-1 is of the form

Alk- PzI - Ck -1
NV_2( /(k-1)

where the C are defined sequentially by

C j 2 - j

with C,7r2/6 and

= rT bi+l0/21F3[+2)/6_ (2 -1) }Tj 24 r(j/ 2; 13[ (j+ 5)/< 6- .7 -i
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This result also yields the solution to the factorization of the number of

levels in the angle quantizers:

HT,j/zI +- 1

A second derivative test shows that this factorization of N_ maximizes

M t-I for any spherically symmetric density.

From the value of Ck_ 1, Eq.(1 1) is minimized by

N, N {E , k - 1) (k -1)/2k N11k

12k CA'~ I/

Remembering that Nf=N / N,, the minimum spherical MSE is

MSE k {2 Ck- (k)/k (12)

EXAIIPLE~f

The compared quantization schemes are the rectangular coordinates

quantizer (k Max-type quantizers), the above described spherical coordi-

nates quantizer and the optimal k-dimensional quantizer discussed by

Zador. In order to compare error rates of schemes for different numbers

of dimensions, we divide the MSE by k yielding a MSE rate per dimension.

Since all of the presented schemes have error rates proportional to

N-2/k, only the coefficient of the rate will be compared. Rectangular

quantizers yield orthogonal errors making the coefficient a constant,

independent of dimension The spherical coordinates quantizer's MSE

rate is found by evaluating Eq (12) with the appropriate E term The

minimally achievable MSE is presented by the upper and lower bounds

derived by Zador This value is
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C(k,2) ' pk/ (k+2)(, (k+2/

where C(k,2) is a constant depending upon the optimal k-dimensional

uniform quantizer Zador provided bounds on this constant More

recently, Conway and Sloane found tighter upper limits on C(k,2) for k

between 3 and 10. Note, however that the optimal scheme requires the

implementation of the optimal k-dimensional uniform quantizer, usually

a vector input device, while the rectangular and spherical schemes

require only scalar processors

The first source we consider is the independent Gaussian source with

probability density function

xrz
f (X'% - e

(27T lk

This source has standard Gaussian marginals, hence, the results will be

comparable to others in the literature. For the three-dimensional case,

the factorization is N=NTNIxN2. Tables of E3 (Nr) and M2(N3,N?) were

generated. The best combinations for the k=3 spherical quantizers are

listed in Table I along with their Signal-to-Noise Ratio (SNR) rates. The per

dimension SNR is

SNR = 10 logl0 k dR

For comparison, the one-dimensional [1] and two-dimensional [6] results

are also tabulated. The values of small N considered correspond to the

integers 8 through 18 cubed which allow easy comparison to the pub-

lished one and two-dimensional results. For large N, several representa-

tive values were selected (N=503 and 1001). The values in parentheses

are the actual factorizations employed and in all c;ses AN' xA'2xN2-A
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)v31 Rect. Polar Three-dim . Best

N SNR SNR SNR dim

8 512 14.62 14.58 14 52 (Sx14x-') I
9 729 15.55 15.59 15.58 (5x16x9) 2

10 1000 16.40 1631 1641 (6x18x9) 3
11 1331 17.16 17.24 17.27 (7xl9xlO 3
12 1728 17.87 1790 17.93 (7x22x 11) 1 3
13 2197 1852 1863 1858 (9x22x11) 2
14 2744 19.13 19.22 1922 (8x26x13) 3
15 3375 1969 1988 1987 (9x25x15 2
16 4096 20 - 2035 2039 (lOx27x15) 3
17 4913 2 2 20-80 20 85 (lOx30xi6' 3
18 5832 21 - , 21.34 21,37 (11x33x16) 3
50 125000 29. 30 02 30 06 (32x83x47; 3
100 1000000 35.65 3603 081,64x168x93, 3

Table I - Comparison of SNR for k - 1,2 and 3 polar quantizers



-62-

This occurs since cubes of integers do not often have suitable factoriza-

tens c- some of the results for smaller N are better. For this case, the

best allocation of levels to each coordinate quantizer is

N, 7 
0 654 N "' 3 , N, F 1.63N 1/ 3 , N 13937N1

As N,-, the minLmum MSE quantizer for the chi density has error:

f. ]3

_ f 1/ 3jk d,= 3 k/2 Pf ( +2)/6-12 1" t 8r(k/ 2)

When k=3, this reduces to E,=l.054 and the resulting asymptotic Gaus-

sian source error rate is 7.401 x N - 2/3 . This asymptotic result compares

favorably to the above numerical results.

For other values of k. the spherical MSE rate is found through Eq.(12)

with E, as above Rectangular coordinates nuantizers have a total error

rate of

MSE,.., j k7T,._ N-21k
2

The optunal rate for Gaussian sources is

MS z C(k,2 21 k +2 14-k/2 i-1

Fig 6 and Table 11 pro-ide a comparison of the coefficient of the error

rate for rectangular. sDherical and optimal quantizers versus the number

of dimensions Notice that k =3 yields the best of the spherical error

rates and that this value is only slightly below that of the polar quantiz-

ers.

7 - ..
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Rect Sph. Lower Optimum Upper
i MSE ME MSE MSE MSE

2 272 25653 2015
3 2.72 2.467 1.734 1,769 2609
4 272 2.48675 1.591 1.624 2.115
5 272 2.51 1.5 1.542 1.863
6 2.72 2.53 1,436 1.475 1 70833
7 2.72 2.54714 1.388 1.425 1.60571
8 2.72 2.56125 1.35125 1.375 1.53125
9 2.72 2.57444 1.32111 1.42111 1.47333

10 2.72 2.586 1.296 1.401 1.428
11 272 2.59545 1.27636 1.39182
12 2.72 2.60333 1.25833 1.36167
13 272 2 61077 1 24308 1.33615
14 272 2.61714 1 23 1.315
15 272 262267 1.218 1.296
16 272 262812 1.2068-7 1 27875
17 272 263294 1.19824 1.26412
18 272 263722 1,16889 1125111
19 2.72 264105 1.18211 124
20 272 2.6445 1 175 1,229
21 272 2.64762 1.1681 1.22
22 272 2.65045 1.16182 1.21091
23 2.72 2.65304 1,15696 1 20304
24 272 265583 1.15208 1.19582
2-5 2'2 2.658 1 1472 1 1892

Table II - Asymptotic results for a Gaussian source

- ii' -- I ' I I. I - I I I'
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Another sphericaly symmetric source is the Pearson Type II source

f (302(v+ I) - +' k-2/X)T; x !x- 2(vJ+ I

This source has finite range and a Pearson 1I marginal density with

parameter v (ii>O). Results for this source are not presented because the

two dimensicrnai case performed best in all of the examples attempted

(polar results can be found in [8").

Another source with infrinte range is the Pearson Type VII source with

Pearson VII marginals (v> l):

f 2x' - -I ,'-1'(v+k /21,
f) 7/2 (L) f 2(v-1) + xrx L,+k/2

For this density, the rectangular error (for a bank of Max quantizers) is

6 B[1/ ,

where B(, I is the Beta function [16-. For this source, the magnitude

error term needed for the spherical coordinates quantizer MSE can be

found to be

Er - (v-11 B 3 [(k+2)/6,(L/'-f/3'
24 B[/c/2,L

The spherical MSE rate is found from Eq.(12, and this term. The minimal

MSE rate can be computed to be

r (Vk/) lrtkk+2L/

These Pearson sources have restrictions on the value of the parame-

ter v in order to assure unit power marginals [18' Plots and tables of the
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coefficient of the MSE rate versus dimension for the Pearson VII source

with various values of the parameter v are presented in Figs. 7 through 9

and Table- i1 through V. The greatest performance gains by the spheri-

cal quantizers were for those Pearson VII sources which are furthest from

the Gaussian (v approaches unity). These sources are more peaked at the

origin and heavier tailed. Figure 10 compares the marginal densities of

the considered sources to illustrate this point. Note that as v-,-, the

Pearson VII source approaches the Gaussian source.
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d Rect. Sph. Lower Optimum Upper
LMzE I MSE MSE MSE ISE

2 20.432 13.259 10.078
3 20.432 8.205 5.3786 5.4857 8.0925
4 20.432 6.4407 3.8657 3.9468 5.1389
5 20.432 5.5567 3.1357 3.2246 3.8951
6 20.432 5.0265 2.7089 2.7838 3.2253
7 20.432 4.6723 2.4293 2.4941 2.8102
8 20.432 4.4184 2.2318 2.2"713 2.5287
9 20.432 4.227 2.0848 2.2423 2.3253

10 20.432 4.0772 1.9709 2.1305 2.1716
11 20.432 3.9565 1.88 2.0512
12 20.432 3.8572 1. 8058 1.9544
13 20.432 3.7738 1.7438 1,8748
14 20.432 3.7027 1.6914 1.8082
15 20.432 3.6414 1.6463 1.7516
16 20.432 3.5878 1.6072 1.7028
17 20.432 3.5407 1. 5729 1.6604
18 20.432 3.4988 1.5426 1.6231
19 20.432 3.4614 1.5155 1.59
20 20-432 3.4276 1.4912 1.5606
21 20.432 3.3971 1.4693 1.5341
22 20432 3.3693 1.4494 1.5102
23 20.432 3.3439 1.4313 1 4684
24 20.432 3.3205 14147 14686
25 20 432 3.299 1.3994 , 1 4505

Table III - Asymptotic results for a Pearson VII source, P= 1.25

-- - i n
b '

. .""
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dim Rect. Sph. 1 Lower Optimum Upper
MSE MSE MSE MSE MSE

2 9.3044 4.2193 3.3594
3 9.3044 3.7081 2.5478 2.5986 3.8334
4 9.3044 3.4921 2.1875 2.2334 2.9079
5 9.3044 3.3719 1.977 2.0330 2.4557
6 9.3044 3.2941 1.8372 1.8880 2.1874
7 9.3044 3.2385 1.7367 1.7831 2.0091
8 9.3044 3.1962 1.6606 1.6899 1.8614
9 9.3044 3. 1626 1.6005 1 7215 1.7852

10 93044 3.1349 1 5518 1.6775 1.7098
11 9.3044 3.1116 1.5114 1.649
12 9.3044 3.0915 1 4772 1.5989
13 9.3044 3.074 1 4479 1.5567
14 9,3044 3.0585 1.4224 15207
15 9.3044 3.0446 1.4001 1.4895
16 9.3044 3.0321 1.3802 1 4623
17 9.3044 3.0208 1.3625 1.4383
18 9.3044 3.0105 1.3466 1 4169
19 9.3044 3001 1.3322 1.39'7
20 9.3044 2.9923 1 3191 1.3804
21 9.3044 29842 1.3071 1.364
22 9.3044 2 9'67 1 296 1.3504
3 9.3044 2 9697 1 1.2859 1 33-2
4 9.3044 2.9631 1.2765 1 3252

25, 9J044 29569 1,26-h 1 3i4

Table IV - Asymptotic results for a Pearson VII source, v=2 5

-- .
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Rect. Sph. Lower Optumum Upper
MSE MSE MSE MSE

2 4.1038 31136 2.5196
3 41038 2.9606 20677 2.1089 3111
4 4.1038 2.9099 1.8502 1.889 24595
5 4.1038 2.8884 17164 17651 2 1321
6 4.1038 2.8776 1.6246 1.6695 1 9343
7 4. 1038 2.8714 1.5569 1.5985 1.8011
8 4.1038 2.8672 1.5047 1 5314 1,7049
9 4.1038 2.864 1.463 1.5735 1.6318

10 4.1038 2.8614 1.4287 1 5444 1.5741
11 4.1038 2859 1.3999 1.5274
12 4.1038 28568 1.3754 1 4886
13 4.1038 2.8548 1.3542 1.4559
14 4 1038 2.8528 1.3356 1.4279
15 4 1038 2.8509 1.3192 1.4035
16 4.1038 2.849 1.3C46 1.3821
17 4 1038 2.8471 1.2914 1.3632
18 4.1038 2.8453 1.2796 1.3463
19 4.1038 2.8436 1.2688 1.3311
20 4.1038 2.8419 1.2589 1.3174
21 4.1038 2.8402 1 2498 1.3049
22 4.1038 2.8386 1,2415 1.2935
23 4.1038 2.837 1.2338 1.283
24 4.1038 2.8354 1.2266 1.2734

1 25 1 4.1038 1 2.8339 1.2199 1.2645

Table V - Asymptotic results for a Pearson vII source, v=5.
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CONCLUSIONS

This chapter presents the generalization of polar quantizers to

greater tnan Lwo dimensions for all spherically symmetric densities. In

comparison, the spherical scheme is applicable to any number of dimen-

sions, k, and has a scalar processor implementation while the optirral

quantizers are available only when the k-dimensional uniform quantizer

can be implemented. The derived performance expressions may be used

to decide if spherical schemes are of value in the particular application.

The MSE rates for k 4 presented were for large values of N only.

Research in one-dimensional compandor approximations suggest that

these error rates are also valid for reasonable data rates (i.e. greater

that 5 bits per dimension) and this was observed in the examples of the

three dimensional Gaussian quantizers computed for N[83 ,183-. It was

also seen for the Gaussian source, as was noted in the published polar

results, that rectangular quantizers perform better than spherical quan-

tizers for, the small values of N while as N increases, the asymptotic

rates became valid and the three-dimensional quantizers performed best.

Of course, the optimal rate is always lower.

The results presented for the multidimensional spherical quantizers

show that spherical coordinates encoding of spherically symmetric

sources is often more efficient in a MSE sense than one-dimensional rec-

tangular coordinates quantizing. For th? Pearson VII source with L/=i'.25,

polar quantizing (k =2) has a gain of 1.9 dB in Signal to Noise Ratio (SNR)

over rectangular quantization while spherical quantization in six dimen-

sions showed an increase of 6 dB The optimal rate for k =6 is approxi-
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rnately 9 dB over the rectangular rate An intuitive explanation for the

spherical coordinate superiority over rectangular schemes is that they

preserve the spherical symmetry inherent in the considered multidimen-

sional densities.

A straightforward and perhaps important extension of this work is

the design of k-dimensional spherical quantizers with uniform step-size.

The solution set is then only the factorization of N and the magnitude

quantizer step-size (k parameters). This extension is important because

of the simplicity of its implementation.

7
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APPENDIX A - BOUNDING M k_ I

The term Mj. defined in Eq (4), is bounded as follows:

I- Given that M, -,[0, 1, then Al<1.

Eq.(4) ex---esses M,~ as the expectation over Vje[-n/2,7r/2' of the

function

: - sin pj sin.F + Ml 1cosVI cos~j

where F is the quantized value of Pj Hence, upper bounding 'I'(w,) by

unity also bounds ll, by unity. The maximum of is

+,,m,=sinj/sinV which is attained at the point tan 3 =M 1 tan;j. Since

MiIC[O.

tan; -. sinrj - sin ;- 4 .- M, -1

2- Given that A j Ql andi the ;;, quantizer satisfies Eqs ,8(, and (9>.

thtcn

The form of Mj in Eq.(4) involves cosine integrals and sine-cosine

integrals Rearranging Eq (9', ailows substitution and expansion of the

sine-cosine integrals over V in Eq.(4) The result is

lJ=1(l/2)F,)/ 2) 'I-1 (sin 2i3,seci 3, + cos-3,cos;9,cCSj-';, d;;

Since all of the terms present are non-negative over the range of ;,

3- 0Ar- M4 _ 1, =2,3, . k-I

Since MA1 =sin(7T/Nj)+(iT/Nj) and N2 _I, then M140.1 This fact,

combined with I and 2inductively, sho%s that )=M. lj2,3. k-,

- .7 'p_
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APPENDIX B - SUMCIENCY OF CONDITIONS

In the text of this chapter, necessary conditions on the output pouints

(the ) and the breakpoints (the s,) of the magnitude and angle quantiz-

ers are given in Eqs.(5) and (6) and Eqs.(8) and (9) respectively. The pur-

pose of this appendix is to demonstrate the sufficiency of these condi-

tions. The included analysis closely follows that of Fleischer [14] and will

draw several results from his paper.

For the magnitude quantizer, we desire to rinim-Lize D in Eq.(2) and

for the j-th angle quantizer, we seek to mirunirize - M, from Eq.(4)

(equivalent to maximizing Mj). ThF. following wl be a parallel develope-

ment of sufficient conditions for either type (magnitude or angle) quan-

tizer Sufficiency is shown by deterrining that the matrix of second par-

tial derivatives, evaluated at the statiornary point, is positive definite

From Eqs (2) and (4, the functionals are both functions of 2N, vari-

ables To reduce this number, assume that the 9, are preassigned and

optirruze over the s. Takirng derivatives yields

0)fk(Th) ( ~ - f, ) ( j + F, - 2 AIk-lrt

and

J/ = K coo-1', nsin i ns , - sini,_. ) + M2 _1 coSiY, ( cosi, - Cos

where K is the constant term from Eq (4). Equating these expressions to

zero yields the necessary conditions in Eqs.(5) and (8) respectively in

both cases, the matrix of second partiai derivatives with respect to the

s,, evaluated at the stationary point determined be Eqs (5) and (8,. is a
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diagonal matrix with elements

6ZD
d 2 = 2Mk- 1 fk( ) ( 9 - I

2 j co.' -O sin 1  sin-j,-,

Since Mk .- is positive and the s. are increasing i i, the above matrices

are both easily seen to be positive defiute. The result is that for fixed 9,

Eqs (5) and (B) are necessary and sufficient to rmninrmze D and -M

resipectively.

Now assume that for the quapriizers, the breakpoints are assigned as

above The functional is now dependent only on N,5 variables, the _€F Tak-

inF derivatives and using the conditions of Eqs (5, and (8' yield

_DF 2f (f, - 1 r fk(r) dr

and

f ( A,- 1 cosi sin' - sini cozz, ) K cos'"i9 d73

Again, equating to zero yields the necessary conditions in Eqs (6) and (9)

After careful algebra and utilization of the conditions in Eqs.(5", 6), (8)

and (9), the second partial derivative matrix with respect to the 9, ,-'an

be shown to be of the form

2a,-6 -b, 0 0 1

-bi 2U2-b -b 2  -b2 0
0 -b2 2a3-b 2-b 3  -63
0 0 -b 3

0 -A,-' 2a,-, bA'

- ,1
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where for the D rniruruzation

t' fk(r ) (

a, f fA(r) dr and b t - rf 1 )

and for the -Mj case

04~ fj (sini sini , + M-1cos-6 cos4,~ cos'i - dt9

and

S= K. M , co ( 1 - sirr, sii - cosj, cos, - )2
Z1 ;( s in , - sm , 3

Note that both sets of b, are positive.

For a matrix M of the above form, a quadratic form can be expanded

as

AZ, Z, - 2

where b 0 0. Since the b, are all positive, a sufficient condition for the

quadratic form to be positive and the matrix to be positive definite is that

r, = 2a, - 2b2 - 2b _I -> 0

For the rmnirurmzation of D, directly following Fleischer's arguments

from this point yields the same sufficient condition

62
2 --logfk(r) < 0

This condition holds for all of the densities considered in the examples

As to the maximization of M2 , no argument similar to Fleischer's is

apparent due to the complexcity of the , and b,; hence, a numerical

evaluation of the a, for the resulting quantizer is appropriate

-7
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APPENDIX C - ASYMPTOTIC DERIVATIONS

In our previous discussion, we saw that the Mj terms were defined

sequentially by

sin(n/ "1

and for2-j -k-1 by

f ( sin sin + jco s )cs- d
M i ;a f (Al)

When the number of levels is each quantizer, N, is large, the com-

pandor model approach is appropriate. Using this model, the quantized

output is approximately equal to the input plus a random error

+ r~i / 2) r[ (j +21/ 6-
+ F[() + 5)/6 cos 0

where e is uniformly distributed on [-l/2A-,/2Aj-]. Substituting in for

i in Eq.(A1), applying the trigonometric identities

sin (a+p) = sin a cos f + sin 6 cos a
cos (a+#) = sin a sin f + cos a cos f

using the small angle approximations

cos 1- Z - ; sin -yn: -y

2 6
integrating over r and simplifying yields (2 f- j -< k -1):

. + ? M- Trrf(j+l)/2]f3[(J+2)/6- 3 + (j+2) M,-. (A2)j+1 24 (j+5) F[j/2] F3[(j +5)/6- N?

Assume that Mj is of the form

M Cj

1--1

.- 4
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This holds for 2=1 since

sin(n/NJ) ft 1 22 i 2

(IT/A') 6 N2 6

We intend to show that this expression holds inductively. Substituting for

MjI in Eq.(A2) yields

__ i jT1 rj+l)/27 r O (j+2)/61 z521~~~~~ - A-lN- -  js
j+I ,=1 24 F[j/21 I"[(j+5)/6]

+ rF(J+1)/a]rN(j+2)/e L7+2) j_,- 2 fJ N,- 1-24 r[j/2] r3[(j +5)/8i

Ignoring the last term (since it is of higher power of N- 1) and maxirmizng

over the value of A\- shows that the above assumption is correct and

yields:

cj = j2 T

where

T. 7 rr[(j+i)/2 F3[(j+2)/6' (2 -1) }j/1

24 rPU/2] r3[(j+5)/6j i c'-

This result also yields the solution to the factorization of the number

of levels in the angle quantizers:

.-T /I)/ 11(k-7)

- T,'/ 2

i=j+l

Table VI presents some useful precomputed results for the factorization

of N'_. The above expression for Nj requires the computation of k-i

values of T and is different for each k. Instead, we present values of F,

a sequential factorization value. It is defined as the proportion of the

unused angle levels which should be assigned to the j-th angle quantizer

f i .. i i i i
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1 1.000 13 0.987
2 0.7573 14 0.9886
3 0.854 15 0.9899
4 0.9074 16 0.9909
5 0.9348 17 0.9918
6 09515 18 0.9926
7 09625 19 0.9933
8 0.97 20 0.9938
9 0.9755 21 0.9943

10 0.9796 22 0.9947
11 I09827 23 0,9951
12 0.9851 24 0.9955

Table VI - Sequential factorization values for a spherical source
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The sequential process, beginning with quantizer Qk- 1, is as follows.

Nk-I = Fk-I N 1(k-1)

N k-2 = F -2 NI NI/ /(k
- 2 )

( ~ I Nk ],(-3)
IV ,- 3 = F k,- 3 N _, , _ J

l ,1/2
N=

N, F F1 P
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CHAPTER 4 - OPTIMAL CIRCULARLY SYMMETRIC QUANTIZERS

INTRODUCTION

The canon' al example of an zero-memory or one-dimensional quan-

tizer is Max's Gaussian probability density function quantizer [1 for the

performance criterion Mean Square Error (MSE). The MSE criterion has

universal appeal in its tractability and its intuitive relationship to noise

power, hence signal-to-noise ratio (SNR). Rate distortion theory, how-

ever, suggests that multidimensional or block quantizers may be more

efficient Research interest in multidimensional quantization began with

the work of Huang and Schultheiss [2" who considered the problem of

quantizing a correlated Gaussian source efficiently. Their solution was to

uncorrelate the source by an appropriate linear filter, thereby changing

the set of coordinates, and to quantize the resulting independent Gaus-

sian random variables with separate Max-type quantizers.

Zador [3- examined the more general problem of quantizing a mul-

tidimensional source under the assumption of a large number of levels.

He employed Bennett's compandor model and derived error rates

depending upon the compressor function and uniform quantizer used.

His expressions showed that the problem of optimal quantization could be

divided into two separate problems: finding the best compressor function

on the multidimensional input space and implementing the optimal mul-

tidimensional uniform quantizer on the unit hypercube In two dimen-

sions, the optimal uniform quantizer is a honeycomb-like tessellation of

hexagons When mapped by the inverse of the compandor function, the
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quantizer becomes a pattern of distorted hexagons on the plane [4'.

Another major area of interest in multidimensional quantizer design

rests in the use of polar coordinates for the independent, bivariate case

Specificaliy, rather than separately quantizing the abscissa and ordinate

as in Fig. 1, a change of variables to polar coordinates is effected. The

resulting magnitude and phase are quantized separately by "'eal-tirne

one-dimensional quantizers. Of particular interest is the quantizing of

independent. bivariate Gaussian random variables with density

P~~ ~ (XY L -(xt+y2)/2
p(z,y) =

For example DFT coefficients, holomraphic data or pairs of inputs from an

iid Gaussian source can be considered as the output of a bivariate Gaus-

sian source.

Independent, unit-power Gaussian variates in rectangular coordi-

nates transform to independent magnitude and phase on the polar coor-

dinates plane by the transformations

T = /+ ; r = tan-' Y
X

The resulting source density expressed as a function of the polar coordi-

nates is

p(r, o) = -!-r e 22
27T

The magnitude r is Rayleigh distributed on [0,-) and the phase r is uni-

formly distributed on [0,2T). Minimizing MSE results in a uniform quan-

tizer for the phase angle and a scaled Max-type Rayleigh quantizer for the

magnitude. It has been shown [5,6 that polar coordinates quantizers for

a bivariate Gaussian source almost always have smaller MSE than

~trt
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Fig. I Typical) bivariate rectaxiguar coordinates quanitizer.
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rectangular quantizers

This chapter examines the optimality of the polar quantizers

developed by Pearlman [5, and Bucklew and Gallagher [6' for the MSE

criterion. It is well known [4] that two conditions are necessary for a

local minimum of MSE [7,83: centroidal output points and Dirichiet parti-

Lion boundaries. Polar quantizers do not conform to these conditions.

Permutations which do conform (labeled Dirichlet polar quantizers) will

be developed and compared to other available two-dimensional quantiza-

tion schemes. Wilson's technique [93 will be mentioned and considered as

an input for the Dirichlet form. Athough this chapter will pursue in

depth only the bivariate Gaussian case, the extensions to higher dimen-

sions [10, and other circularly symmetric densities [11 will be outlined.

OPTIMAL TWO-DIMENSIONAL QUANTIZERS

Define the minimum MSE, N-level quantizer QN, on the plane by

S, ,; =1,2...N.I where the S, are dis.joint regions such that their union

covers the plane and the i, are the output points associated by the quan-

tizer to these regions The quantizer's operation for the input vector x is

Q%,x (X =1-,X- S,

For an input x with bivariate pdf p (x, the MSE D is

D=f f x-Q.(x) 2 p(x)dx

Minimizing D over the choice of S, and i, the following are necessary

conditions

xp(x)dx

ff p(xdx(I)
, f
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which states that the output i1 is the centroid of the region S, with den-

sity p (x) and

N
Si= r) ix x -, < x - (2

which states that S. is formed by t'.. -- the iiutersection of nearest

neighbor or Dirichiet partitions of i, an(' the hier output points. The

points of equality in Eq.(2) are the region boundaries which are assigned

to either region and contribute equivalent error either way. A Dirichlet

partition is the perpendicular bisecter of the hlne segment connecting a

pair of output points. From Eq.(2), it can be shown that the resulting S z

are all convex, simply connected re gions. This partitioning holds for most

mean error measures while centroidal outputs holds only for MSE. The

resulting MSE for this optimal quantizer is

N=a~ ii E x: (x)dx _
Dti1

where a. is the signal power.

For the uniform density on the unit square, the optimal region pat-

tern for fine quantization, ignoring edge effects, is known to be a tessella-

tion of regular hexagons For other densities, Eqs (1) and (2) may be

used iteratively to converge to a local minimum of MSE. Note that if the

regions are fixed, Eq.(1) is necessary and sufficient to minimize D. When

the output points are fixed, Eq.(2) is necessary and sufficient to minimize

D. The iterative design method, as previously proposed for one-

dimensional problem solutions [12], is to select a set of outputs Jij and

to employ Eq (2) to select the S, optimally This set of outputs and

regions has a distortion measure P, Usually, Eq (1) is not satisfied, the

- I - " . , , -: -J
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I not being optimal for the generated regions, so redefining the out-

puts by Eq.(1) will decrease D to a value smaller than D], say D2 . Slmi-

larly, now Eq.(2) is probably not satisfied, so redefining the regions will

again decrease the error. This iterative scheme converges to a local

minimum of D due to the fact that D is reduced by each application of

Eq. () or (2) and that. D is lower bounded by zero by being the integral of

a positive quanwty.

DIRICHE POLAR QUANTIZERS

Wilson [9] classified two types of polar quantizers: Strictly Polar

(SPQ) and Unrestricted Polar (UPQ) Quantizers. For the SPQ's, the total

number of outputs N is factored into NxN,, the number of magnitude

and phase levell respectively. The UPQ's, a larger class of quantizers,

reqwre only that the number of outputs sum up to N (P2 +P 2 +...Pu=A,

hence different radii levels can have -.iferent numbers of phase levels.

For small N, UPQ's have been shown to substantially reduce the MSE. All

polar quantization regions are partial annuli, delimited by rays of con-

stant angle and arcs of constant radius as in Fig. 2. Unfortunately, these

quantV-ers do not satisfy Eqs (1) and (2). In particular, the magnitude

boundaries are not Dirichlet partitions. From Eq (2), each S, is a convex

polygon which partial annuli are not.

The iterative technique, as explained above using Eqs.(l) and (2),

may be employed to the strictly polar quantizers to reduce MSE and con-

verge to a local minimum. After selecting a factorization of A=,AxN-,.

applying Eq.(2) yields a pattern as in Fig 3. The inherent symmetry of

this pattern allows the analysis to focus on one slice of angle 27T/ AN, The

7 I.
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iterative use of Eqs (1) and (2) will not change the phase boundaries; only

the magnitude boundaries will move. Similarly, the output points will

vary aloi,, Lhe ray bisecting the phase boundaries. Hence, a one-

dimensional iteration will yield these Dirichlet Polar Quantizers (DPQ's)

from the SPQ's. Dallas [13] has applied a similar region shape to the

reduction of the Fourier domain phase quantization noise for computer

generated holograms.

From Fig. 3, it is seen that the DPQ's can be implemented as follows.

First, quantize the phase to one of N. levels with a uniform quantizer on

[0,27T). The second coordinate used to specify the output is its distance s

along the quantized phase ray

s = r cos(rp - i)

for i the quantized version of rp. The univariate probability distribution

function of this distance coordinate can be found to be

f (s) = N-- e-l [0(s tan 7/ N,) -51

for 4 the error function integral

CY)=" 1 e-st/2 d

Letting N,- (with I'Hopital's rule), f(s) approaches the Rayleigh den-

sity.

Standard Max-type expressions may be used to define the minimum

MSE, N7-Ievel quantizer for s

ati

fs f(s) ds

Sj 2 ' t So
f f (s) dcs
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where the - are the quantizer outputs and the si are the region end-

points. Uniqueness of this quantizer is shown by applying Fleischer's con-

dition [121 to the distance density

00
7 log9f (S) < 0

Wilson's solutions of the UPQ's for N=I.....32 may also be considered

with the iterative technique. His N = 1, 2, 3 and 4 cases are already

optimum. The N = 5, 6, 7 and 8 solutions are easily extended. Unfor-

tunately, for N > 8, the boundaries are no longer easy to compute and the

resulting analysis is not included here. He only considered small N since

the number of factorizations grows quickly with N and because the small

N region is of importance since it is here that rectangular formats out-

perform polar forms.

DIECHLET ROTATED POLAR QUANTIZERS

The previous section showed that Eqs.(1) and (2) can be applied to a

set of outputs to iterate toward a local minimum of MSE. The resulting

quantizer will vary depending upon the initial output point pattern. A

rectangular starting grid produces a rectangular quantizer, a pair of Max

Gaussian quantizers, since the partitions will always move perpendicular

to themselves. A polar initial pattern produces the Dirichlet Polar Quan-

tizer already introduced.

Consider the polar quantizer (SPQ) where the magnitude and phase

are independently quantized (Fig. 2). A rotation of every other magni-

tude ring, as in Fig. 4, does not change the associated MSE. This new pat-

tern, when applied as a starting point for the iterative method with
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Fig. 4- Rotated polar pattern.

Fig. 5 - Dirichiet Rotated Polar Quentizer (DRPQ) pattern.
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Eqs.(l) and (2). will yield a quantization pattern as in Fig. 5, quite

different from the Dirichlet Polar Quantizer. This Dirichlet Rotated Polar

Quantizer (DRPQ), although more difficult to implement than the DPQ,

has lower MSE (for a possible implementation, see Appendix A).

Other rotations and permutations on the plane could be used to solve

for better quantizers. However, most other patterns make Eq. (1)

dilfricult to compute. A further extension of this rotated form is to allow a

central region with N. sides and output value zero similar to Wilson's 5

through 8 patterns. The MSE savings could be dramatic, but are not con-

sidered here.

EXAMPLES

The iterative technique is defined by Eqs.(1) and (2). The numerical

calculations of the region probabilities and moments for the bivariate

Gaussian density are described in Appendix B. For the examples, the fol-

lowing factorizations of N were employed:

Rectangular: N. f Ny

Polar: N. f 2.6 N,

DPQ: No f 2.6 N,
DRPQ: NF f N,

Symmetry arguments show that the rectangular MSE is minimized if the

levels are equally divided among the coordinates. Previously published

results suggest the factorization for the polar scheme. As the number of

levels gets large, the DPQ's and the polar quantizers are equivalent,

hence the asymptotic factorizations of N are the same.

For the tabulated results, all factor zations for the DPQ's were com-

. .. r
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pared and the best result occurred concurrent with the polar factoriza-

tion. For the DRPQ's. all combinations were attempted for N:144. It was

seen that equal division of the levels produced optimal results. For

N>144, only equal factorizations were attempted; hence, the actual error

rates may be lower than the tabulated results for those values of N. The

comparison of MSE rates is in Table I with a plot of the results in Fig. 6.

Error values for polar and rectangular quantizers are included for com-

parison. The number in parenthesis is the actual number of levels if

different from the first column. This difference appears due to the neces-

sity to factor N into appropriate integers. Figs. 7 through 13 depict the

DRPQ patterns for some of the values listed in Table I.

.. .__ 4..- "- I- I -,. .. . i
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N Polar Dirichlet Dirichlet R
N Polar - Polar Rotated Polar Rectangular

16 .2396 .2391 .2224 2350
25 .1710 (24) .1702 (24) .1462 .1599
36 .1176 .1174 .1052 .1159
49 08889 (48) .o882 (48) .07899 .08800
64 .0673 .06967 .06134 .06908
100 .04392 (12) .04387 (102) .04003 .04586
144 .03244 (140) .03241 (140) .02816 .03268
225 .02056 .02055 !9.01822 .02146
324 .01468 (320) .01487 (320) %.01280 .01519
529 .008904(532) .008899(532) s.008046 .009482
900 i.005314 1.005308 - ,.s004684 , 0066

Table I - Bivariate Gaussian density quantizer's MSE values.

5.4-
5- RECT.

5.0-

x 4.2-

z
3.8 '-DRPQ

364 -DPO
I .I , , I

5 9 10

log2 N IN BITS

Fl. 6- Comparison of MSE rates for four bivariate quantizers

(Rectagular, SPQ. DPQ and DRQ',.

I ___
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F N=7 N16 DRPQ pattern.

Fi&. 8 - N=25 DRPQ Pattern.

ta. 1.
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F1. 9 - N=36 DRPQ pattern.

Fi. 10 - N=49 DRPQ pattern.
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Fig. 11 - N=64 DRPQ pattern.

Fig. 12 - N= 100 DRPQ pattern.

L4
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Fig. 13 - N= 144 DRPQ patter.

7--
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CONCLUSIONS

For two reasons, the presented figures are dominated by patterns for

DRPQ's. The DPQ patterns are all of the same form as Fig. 3 and the

DPQ's MSE is only slightly below that of the SPQ, being equal when N--.

The DRPQ patterns are included to demonstrate the hexagonality of the

quantization regions, the way in which the hexagon sizes are distributed

and because the DRPQ's substantially reduce MSE. At N=100, the gain in

SNR is .6 dB over rectangular and .4 dB over polar quantizers.

From Fig. 6, the asymptotic MSE rates can be considered. The SPQ

and DPQ (equivalent as N-+-) have rate NxD=4.95 for a bivariate Gaus-

sian source. The corresponding optimal rAte is 4.03 and the rectangular

rate is 5.44. From the graph, the DRPQ rate falls between the polar and

optimum. Although the DRPQ is not optimal, it does always perform

better than both polar and rectangular schemes. Results for DRPQ's

allowing an N.-sided polygonal region at the origin may be even better.

Up to this point, this chapter considered only the bivariate Gaussian

case. The trapezoids of the Dirichlet Polar Quantizer and the polygons of

the DRPQ become polytopes in higher dimensions. Other circularly sym-

metric and non-circularly symmetric densities may also be used. The

difficulty in both cases is obtaining accurate probability and moment

integrals.

Polar quantizers as described in the literature minimize MSE subject

to independent coordinates. Loosening the coordinate selection slightly

(to angle r and distance s) yields DPQ's, again minimizing MSE for their

constraint class Further loosening of the coordinate class yields the

I -- _ _ . .
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DRPQ's with substantially reduced MSE, but increased complexity o!

implementation. The intuition to be gained from this work is as follows:

all of the mentioned schemes (rectangular, polar, DPQ and DRPQ) minim-

ize MSE subject to their implementation constraint. Rectangular formats

retain centroids and Dirichlet partitions (necessary conditions), but lose

the symmetry of the problem; polar forms preserve the problem sym-

metry but lose the necessary conditions; the DPQ and DRPQ schemes

have both.

k ________

4-------
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APPENDIX A - DRPQ IMPLEMENTATION

This appendix presents a possible real-time implementation for the

Dirichlet Rotated Polar Quantizers (DRPQ's). For an N-level quantizer,

the levels factorization is N = N, x N,. The scheme is as follows:

1 - Convert the input x to polar coordinates, r and rp.

2 - Process the phase angle rp with a 2N,-level uniform quantizer on

[0,21r). The outputs 0 are of the form 7r(2k-1)/2N. for kc[1,2_...2N,].

3 - Process the magnitude r with a N,-level, lower value quantizer. This

quantizer's output F is the magnitude value closest and less than the

actual distance.

4 - For a lower magnitude of level j and a phase of level k, compare

fje joj, -r ejP and p3 +l ej4 ' -.-r ei-

to find the closest output where

7T 2k -I + +if j-k is even

NF 2 2NIV - if j -k is odd

This scheme requires no compressor functions as does the optimal

scheme and is real-time, digital implementational. Also, this implemen-

tation extends trivially to the zero-output extension of the DRPQ previ-

ously described.
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APPENDIX B - BIVARIATE GAUSSIAN INTEGRALS

The numerical calculations necessary to solve iteratively Eqs. (I) and

(2) for the DPQ's and DRPQ's involve integrations on the bivariate Gaus-

sian plane of polygonal regions. Polygons on the plane can be partitioned

into the sum and difference of triangles which have a vertex at the origin

and a side along a coordinate axis. Without loss of generality, since the

regions are symmetric about a ray of constant angle, we assume the

regions to be symmetric about the positive x-axis and use this axis as the

side of all the triangles (see Fig. 14).

For the calculation of the areas (probabilities), these triangles are

again partitioned into the difference of two right triangles with a vertex

at the origin as in Fig, 15. A right triangle is rotated about the origin to

be equivalent to one with vertices (0,0), (O,h) and (h,kI as in Fig 16. The

area is then

V(h,k) = f f -"e/2 f e -V'/2 d

This expression, although not directly integrable, can be expanded into a

series summation [ 14,153

Khk) = (27T)- r( -e 3)

5 1 I- I- -- -- t -- _ Im. .

with A=k/h and m=)h 2. Truncation of this series after 20 terms yielded

the approximations employed in the presented results.

The symmetry of the DPQ and DRPQ regions reduces the moment cal-

culation to that along the ray of symmetry (the z-axis). For the original
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B
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0 b c

Fig. 14- Triangular region.

bAV AO ABA

Fig 15 - Diference o! right triangles,

k

0 h

Fig. 16 - Triangle with sides of length h and k.
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triangle with vertices at (0,0), (c .0) and (6 ,a) the z moment is

,-'+_1d'

M ffxz-L-e 2 xd

Inserting the correct limits in the integration, integrating over z. com-

pleting the square in Vj in the exponent and integrating over V yields

f(ag) -. 5 exp x
-/7g 2(c -4 )Th

where

+ 1- and a2

+ 2 (c -b)

Sir
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CHAPTER 5- CONCLUSIONS

REVIEW AND FURTHER RESEARCH

In this chapter, the main achievements of each of the preceding

chapters will be discussed. Shortcomings and possible avenues of future

research will be mentioned when available.

In the second chapter, zero-memory quantizers are designed when

the available source statistical description is a histogram. The design of

the histogram measurement is also discussed. This scheme is practical

in that only information which is easy to obtain is needed to completely

design the quantizer and the piecewise linear compressor is easy to

implement. Recently, this idea has been extended to block quantizers

[I]. Further research in robust quantizer design might iuclude (i) apply-

ing other techniques besides Chebychev-lke probability inequalities to

the problem of allocating the histogram regions, (ii) discussing the design

inaccuracy due to the empirical region probability measurements and

(iii) in block quantization, using as the histogram cell a cross product of

intervals and exploring this form of dependence structure.

The third chapter considered the extension of polar quantizers to

greater than two dimensions. The general result for k-dimensions and

any spherically symmetric source were presented. It was noted in the

chapter that the Gaussian source did not exhibit an appreciable gain in

performance on allowing the number of dimensions to increase. Among

the problems which remain to be answered are the following (i) can other

coordinate systems be applied as easily and (ii) how often do spherically

I . .. . .. .
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symmetric sources occur naturally? The design was founded firmly upon

the fact that the source was spherically symmetric. This implies a cer-

tain depeidence structure on the multivariate density. Rectangular

quantizers, although not performing as well in the tabulated examples,

are robust in the sense that their error rate is independent of the mul-

tivariate source structure since only the marginal density matters. This

fact suggests that whern the multivariate structure is questionable, rec-

tangular quantizers should be employed.

The fourth chapter extends the results of the third chapter by con-

sidering the optimality of spherical coordinates quantizers. Several other

authors [2,3] have noted the lack of optimality of block quantizers. The

chapter stresses the facts that the DRPQ's have hexagozml regions, which

are conjectured to be optimal, and nearly optimal performance. Future

research in this area could be (i) extending the examples to other

sources beyond the bivariate Gaussian and (ii) allowing a central region in

the pattern whose output value is zero.

- -- Ai - w- rh I #
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